Primary productivity in Bahr Al-Najaf Depression Reservoir/Iraq

Mohammed Jawad Salih Al-Haidarey¹ Muhson Chellab Abbas² Ibitihal Aqeel Abdulmunem³

¹Department of Ecology/Faculty of Science/University of Kufa/ Republic of Iraq
²Department of Biology/Faculty of Science/University of Kufa/ Republic of Iraq
³Department of Biology/Faculty of Science/ University of Muthanna/ Republic of Iraq

Abstract:

The primary productivity was calculated depending on pelagic and benthic biomass. Monthly samples were obtained from four study stations (February 2015 to January 2016). The pelagic primary productivity values were ranged between 1.26 mg cm⁻² year⁻¹ to 4.31 mg cm⁻² year⁻¹, and benthic primary productivity was ranged between 0.01 mg cm⁻² year⁻¹ to 0.12 mg cm⁻² year⁻¹. The highest pelagic productivity was observed in spring and the lowest one was in autumn while the highest benthic productivity was obtained in autumn and the lowest productivity in winter. The highest phytoplankton abundance was observed in spring and the lowest was recorded in summer, while the highest Epipelic abundance was observed in autumn and the lowest in spring. Statistical analysis showed that spring significantly affect pelagic net primary productivity, while autumn significantly affect benthic net primary productivity.

Keywords: Bahr Al-Najaf depression Reservoir, pelagic and benthic primary productivity.

Receiving Date : 16 - 4- 2017
Acceptance Date : 7 - 5 -2017

Part of of Ph.D dissertation of the third author
Introduction:

Primary productivity is a measure of new organic matter created in the water body. It can be determined by the oxygen production fluxes during short periods of 1-3 h per unit volume of water and it is influenced by a number of physical and chemical factors. (40).

Primary producers form the energetic base of most ecosystems on this planet. The carbon which is fixed by plants through photosynthesis, the basis of almost all terrestrial and marine food webs. Algae are most often the dominant primary producers in lentic system, and are responsible for carbon fixation and sequestration of essential nutrients such as nitrogen and phosphorus to consumers. Algae are critical ecosystem components of both nutrient cycles and food webs in lakes (39).

The basic control factors of primary production are light, nutrients, rain, wind in addition to dissolved gases and bottom feature varying their relative importance in the ecosystems according to their dynamics. (28)

Primary productivity had been studied in different regions of the world by several researchers such as (14, 17, 20, 21, 23 and 34). However there are a few studies on primary productivity in the Iraqi aquatic environments such as, (1, 3, 5, 10 and 38). Bahr Al-Najaf is a depressed area, composed of a lake or marsh-like area with limited cultivated orchards beyond surrounded by vast desert or semi desert areas, located to the west and south-west of Holy Najaf city (32). It extends at north west-south east direction of an area about 360-750 Km², of coordinates longitude 43’ 40 - 44° 25 E and latitude 31’ 40 - 32° 10 N and altitude elevation of about 11 m a. s. l. (13)

Productivity in Bahar Al-Najaf Depesion Reservior (BNDR) relied on biomass for pelagic and benthic algae and productivity value of BNDR lower than value recorded in Al-Razaza lake due to adopted method, the nature of study.
area in terms of high salinity, and other factors cause environmental pressure on organisms. BNDR has been studied by (7 and 27).

Materials and Methods

Four sampling sites were chosen in BNDR, the water sources in site 1 (st.1) considered to be clean as freshwater resources; site 2 (st.2) and site 3 (st.3) were saline water; site 4 (st.4) was closed to the sewage sources (Fig.1). One liter triplicate subsurface water samples were taken monthly (February 2015 to January 2016), 20 µm phytoplankton net were used for quantities and qualities study of microalgae and Ekman grab sampler for quantitative estimation of epipelic algae. All samples were fixed with Lugol’s solution (19).

The algal-biomass was estimated according to: Eker-Develi, and Kideys (2003), Hillebrand et al (1999), Sun, and Liu (2003), and Aktan (2005). Total phosphorus (TP), total nitrogen (TN), dissolved oxygen (DO) were measured according to Al-Zurfi (2010).

![Figure 1: The study sites in Bahr Al-Najaf.](image-url)
Results and Discussion:
DO concentration generally was high in winter which reached a maximum value of 9 mg.l⁻¹ may be related to the effect of decreasing the temperature, growth of algae and aquatic plants and good mixing between water layers (35), but decreased to ND during summer and autumn may be due to increase of organic material, water temperature which led to increase activity of microorganisms that cause decomposition of organic material and consumption of oxygen (18). Results of present study were in agreement with (37) and (26). (Figure, 2)

![Figure 2: Seasonal variation for dissolve oxygen value in study sites](image)

The total nitrogen concentration generally was high during autumn season due to bacterial activity, decomposition of organic matter, decrease in the uptake by phytoplankton and low water level(15) while lowest value was observed during spring(Figure, 3). This may be related to increase uptake by aquatic plants and phytoplankton (31). The TP concentration was relatively low in winter due to increased uptake by aquatic plants during this seasons
0.009 mg.l\(^{-1}\) but it was increased in summer to 0.02 mg.l\(^{-1}\) due to decomposition of aquatic plants and organic matter as well as decreasing water level, evaporation or decrease up take by phytoplankton (33). (Figure, 4).
On the other hand TN and TP concentrations were higher during autumn and summer in sediments which were 75 mg.l\(^{-1}\) and 0.95 mg.l\(^{-1}\) respectively. (Figure, 5 and 6) because of the anaerobic conditions, lack of oxygen (11) and low water level and receive sewage water (2) or decomposition of aquatic plants and organic matter (30). Results of present study were in agreement with (26) and (6).

Figure 3: Seasonal variation for total nitrogen in study sites

Pelagic and benthic primary production exhibited clear seasonal changes (Figure, 7). The pelagic production was 4.31 mg. cm\(^{-2}\).year\(^{-1}\) during spring and 1.26 mg.cm\(^{-2}\).year\(^{-1}\) during autumn. While benthic production was 0.12 mg. cm\(^{-2}\).year\(^{-1}\) during autumn and 0.01 mg. cm\(^{-2}\).year\(^{-1}\) during winter, the changes in the production followed the changes in the pelagic and benthic algal-density. The increasing of primary production in spring and autumn due to the algal...
biomass increase for the following dominant species: *Chroococcus turgidus* var *maximus*, *Spirulina major*, *Merismopedia glauca*, *Cyclotella meneghiniana*, *Gyrosigma attenutum*, *Cyclotella stilligera*, *Amphora commutate*, *A.ovalis*, *Nitzshia sigmoideae*, *Osillatoria tenius*, *Cocconies placental*, *S. subsala*, *Cymbella cistulla*, *Gyrosigma accuminatum* (Table 1 and 2).

Figure 4: Seasonal variation for total phosphor in study sites

The result showed that there was a positive correlation between pelagic productivity and water temperature \(r=0.52\) due to increase of carbon incorporation rates under light saturation, on other hand, warming led to an increase of algae biomass in the absence of the consumer pressure (29), while primary productivity was not related to total phosphorus or total inorganic nitrogen concentrations and that in line with the data of Keithan and Lowe (28).

Bahr Al-Najaf Depression Reservoir exhibited very low benthic production and dominated by phytoplankton production this is agree with (16); (8), and (25) who describes the negative feedback pelagic and benthic primary producers on each other’s growth. Benthic production reduces nutrient influx from the sediments...
to the pelagic habitat, whereas light attenuation caused by phytoplankton development limits benthic algae growth. Statistical analysis showed that spring season had significant effect on pelagic net primary productivity while autumn season had significant effect on benthic net primary productivity.

Figure 5: Seasonal variation for total nitrogen value in study sites of sediments

Figure 6: Seasonal variation for total phosphor value in study sites of sediments
Table 1: Phytoplankton abundance and biomass in BNDR, 2015.

<table>
<thead>
<tr>
<th>Date/Site</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>312*</td>
<td>201</td>
<td>142</td>
<td>230</td>
<td>221.25</td>
</tr>
<tr>
<td></td>
<td>7003**</td>
<td>38174</td>
<td>1389</td>
<td>14374</td>
<td>15235</td>
</tr>
<tr>
<td>Spring</td>
<td>233</td>
<td>233</td>
<td>381</td>
<td>294</td>
<td>285.25</td>
</tr>
<tr>
<td></td>
<td>309</td>
<td>45250</td>
<td>3333</td>
<td>542</td>
<td>12358.5</td>
</tr>
<tr>
<td>Summer</td>
<td>165</td>
<td>127</td>
<td>87</td>
<td>250</td>
<td>157.25</td>
</tr>
<tr>
<td></td>
<td>32490</td>
<td>34650</td>
<td>8149</td>
<td>94153</td>
<td>42360.5</td>
</tr>
<tr>
<td>Autumn</td>
<td>133</td>
<td>162</td>
<td>108</td>
<td>255</td>
<td>164.5</td>
</tr>
<tr>
<td></td>
<td>567</td>
<td>524</td>
<td>808</td>
<td>15612</td>
<td>4377.75</td>
</tr>
<tr>
<td>Mean</td>
<td>10092.25</td>
<td>29649.5</td>
<td>3419.75</td>
<td>31170.25</td>
<td>18582.9375</td>
</tr>
</tbody>
</table>

*: Abundance $\times 10^3$ indL^{-1}, **: Phytoplankton biomass mg$L^{-1} \times 10^4$.

Conclusion

It can be concluded that the pelagic productivity were higher than benthic productivity. Spring season significantly affect pelagic productivity and autumn season significantly affect benthic productivity.
Table 2: Epipelic abundance and biomass in BNDR, 2015.

<table>
<thead>
<tr>
<th>Date/Site</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>0.463*</td>
<td>0.576</td>
<td>0.821</td>
<td>0.496</td>
<td>0.589</td>
</tr>
<tr>
<td></td>
<td>122**</td>
<td>761</td>
<td>34</td>
<td>754</td>
<td>417.75</td>
</tr>
<tr>
<td>Spring</td>
<td>0.18</td>
<td>0.11</td>
<td>0.07</td>
<td>0.1</td>
<td>0.115</td>
</tr>
<tr>
<td></td>
<td>639</td>
<td>639</td>
<td>665</td>
<td>32</td>
<td>493.75</td>
</tr>
<tr>
<td>Summer</td>
<td>0.207</td>
<td>0.62</td>
<td>0.466</td>
<td>0.53</td>
<td>0.45575</td>
</tr>
<tr>
<td></td>
<td>127</td>
<td>258</td>
<td>39</td>
<td>38</td>
<td>115.5</td>
</tr>
<tr>
<td>Autumn</td>
<td>0.686</td>
<td>0.73</td>
<td>0.92</td>
<td>0.38</td>
<td>0.679</td>
</tr>
<tr>
<td></td>
<td>736</td>
<td>699</td>
<td>641</td>
<td>33</td>
<td>527.25</td>
</tr>
<tr>
<td>Mean</td>
<td>0.384</td>
<td>0.509</td>
<td>0.56925</td>
<td>0.3765</td>
<td>0.4596875</td>
</tr>
<tr>
<td></td>
<td>406</td>
<td>589.25</td>
<td>344.75</td>
<td>214.25</td>
<td>388.5625</td>
</tr>
</tbody>
</table>

*: Abundance×10⁴ ind.L⁻¹, **: Epipelic biomass mg.L⁻¹×10⁴.

Figure 7: Seasonal variation of Net primary production in Pelagic and benthic
References:

9- Aktan, Y; V. H. Tüfekçi; H. Tüfekçi, and Aykulu, G. 2005. Distribution patterns, biomass estimates and diversity of phytoplankton in İzmit Bay

Kufa Journal For Agricultural Sciences 2018 121 – 135 :10 (3)

الإنتاجية الأولية في منخفض بحر النجف/العراق

مجيد جواد صالح الحيدري1، محسن جلاب عباس2، ابتهال عقيل عبد المنعم3

1قسم البيئة/ كلية العلوم/ جمهورية العراق
2قسم علوم الحياة/ كلية العلوم/ جامعة الكوفة/ جمهورية العراق
3قسم علوم الحياة/ كلية العلوم/ جامعة الملك فهد/ جمهورية العراق

المستخلص:

حسب الانتاجية الأولية بالاعتماد على الكتلة الحية للطحالب الهائمة والملتصقة. اخذت عينات شهريّة من محطات الدراسة الأربع للفترة من شباط/مارس 2015 ولغاية كانون الثاني/يوليو 2016. تراوحت إنتاجية الطحالب الهائمة بين 1.26 ملغم سمن1، 4.31 ملغم سمن2، 0.44 ملغم سمن3. وترامحت إنتاجية الطحالب الملتصقة بين 0.01 سمن1 إلى 0.12 سمن2. ولاحظت أعلى إنتاجية للطحالب الهائمة في فصل الربيع واقل إنتاجية الخريف بينما سجلت اقل إنتاجية للطحالب الملتصقة في الخريف واقلها في فصل الصيف. ولاحظت اعلى وفرة للطحالب الهائمة في فصل الربيع بينما اقل وفرة في فصل الخريف بينما اعلى وفرة للطحالب الملتصقة لوحظت في فصل الخريف واقل وفرة في فصل الربيع.بينما نتائج التحليل الاحصائي أن فصل الربيع قد أثر بشكل معنوي على إنتاجية الطحالب الهائمة بينما فصل الخريف أثر بشكل معنوي على إنتاجية الطحالب الملتصقة.

الكلمات المفتاحية: منخفض بحر النجف، الإنتاجية الأولية للطحالب الهائمة والملتصقة

تاريخ الاستلام: 16-4-2017
تاريخ القبول: 7-5-2017

البحث جزء من أطروحة دكتوراه للباحث الثالث