Structural and Optical Properties of ZnO Nanorods Thin Films Prepared by Hydrothermal Method and Effect of growth time

Ahmed Saud Abed

Abstract


This paper describes, Synthesis of zinc oxide nanorods (ZnO NRs) by hydrothermal method at different growth time. The structural and morphological properties were characterized by X-ray diffraction (XRD), Energy Dispersive X-Ray (EDX) and Field Emission Scanning Electron Microscope (FE-SEM). The ZnO nanorods are obvious hexangular wurtzite structure and preferentially oriented along the c-axis (002) and growth vertically to the substrates. The optical properties were studied, from UV-Visible spectrophotometer and Photoluminescence (PL), the optical band gap energy of all samples ZnO nanorods prepared (S1, S2 and S3) was calculated to be (3.425 eV, 3.4 eV, 3.425 eV) respectively. Also, studied effect of growth time on ZnO nanorods.


Full Text:

PDF

References


Yalcin, O. (2012). Nanorods. Turkey: Marko Rebrovic.

C. Bhakat, P. Singh, Zinc Oxide Nanorods: Synthesis and Its Applications in Solar Cell, International Journal of Modern Engineering Research (IJMER) 2 (4) (2012) pp.2452-2454.

C. Zhang, Y. Yan, Y.S Zhao, J. Yao, Synthesis and applications of organic nanorods

nanowires and nanotubes, The Royal Society of Chemistry (2013) pp.1-29.

B.R. Mehta, F.E. Kruis, B.R. Mehta, F.E. Kruis, A graded diameter and oriented nanorod-thin film structure for solar cell application: a device proposal, Solar Energy Materials & Solar Cells (2004) pp.1-7.

F.S. Nas, M. Ali, A. Muhammad, Application of Nanomaterials as Antimicrobial Agents: A Review, Archives of Nanomedicine 1 (3) (2018) pp.59-64.

V.N. Popov, Carbon nanotubes: properties and application, Materials Science and Engineering 43 (2004) pp.61–102.

B. Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye sensitized

colloidal TiO2 films, Nature 353 (1991). pp.737-740.

S. Yun, J. Lee, J. Yang, S. Lim, Hydrothermal synthesis of Al-doped ZnO nanorod arrays on Si substrate, Physica B: Condensed Matter 405 (1) (2010) pp.413-419.

S. Baruah, J. Dutta, Hydrothermal synthesis of Al-doped ZnO nanorod arrays on

Si substrate, J. Cryst. Growth 311 (8) (2009) pp.2549-2554.

K. Ddust, J. Karczewski, P. Jasinski, Influence of synthesis conditions on zinc oxide

nanorode layer morphology, National Centre for Research and Development 103 (22) (2011) pp.24-28.

A. Pimentel, S. H. Ferreira, D. Nunes, T. Calmeiro, R. Martins, E. Fortunato, Microwave Synthesized ZnO Nanorod Arrays for UV Sensors: A Seed Layer Annealing Temperature Study, materials 9 (299) (2016) pp.2-15.

M. Kashif, U. Hashim, M. E. Ali, S.M.U Ali, M. Rusop, Z. H. Ibupoto, M. Willander, Effect of Different Seed Solutions on the Morphology and Electrooptical Properties of ZnO Nanorods, Journal of Nanomaterials (2012) pp.1-6.

N.S. Ridhuan, K. A. Razak, Z. Lockman, A. Abdul Aziz, Structural and Morphology of ZnO Nanorods Synthesized Using ZnO Seeded Growth Hydrothermal Method and Its Properties as UV Sensing, PLPS ONE 7 (11) (2012) pp.1-15.

H.J. Jung, S. Lee, Y. Yu, S.M. Hong, H.C. Choi, M.Y. Choi, Low-temperature hydrothermal growth of ZnO nanorods on sol–gel prepared ZnO seed layers: Optimal growth conditions, Thin Solid Films 524 (2012) pp.144-150.

L.F. Da Silva, O.F. Lopes, A.C. Catto, W.A. Jr, M.I.B. Bernardi, M.S. Li, C. Ribeirob, E. Longoa, Hierarchical growth of ZnO nanorods over SnO2 seed layer: insights into electronic properties from photocatalytic activity, The Royal Socity of Chemistry 6 (2016) pp.2112-2118.

A.S. Rana, M. Kang, H.S. Kim, Microwave-assisted Facile and Ultrafast Growth of ZnO Nanostructures and Proposition of Alternative Microwave-assisted Methods to Address Growth Stoppage, Nature 6 (2016) pp.1-13.

D.C. Olson, J. Piris, R.T. Collins, S.E. Shaheen, D.S. Ginley, Hybridphotovoltaic devices of polymer and ZnO nanofiber composites, Thin SolidFilms 496 (1) (2006) pp.26-29.

K. Takanezawa, K. Hirota, Q.S. Wei, K. Tajima, K. Hashimoto, Efficient charge

collection with ZnO nanorod array in hybrid photovoltaic devices, Journal of

Physical Chemistry C 111(19) (2007) pp.7218-7223.

Q. Zhou, W. Chen, L. Xu, S. Peng, Hydrothermal Synthesis of Various Hierarchical ZnO Nanostructures and Their Methane Sensing Properties, Sensors 13 (2013) pp.6171-6182.

N.A. Salahuddin, M. El-Kemary, E.M. Ibrahim, Synthesis and Characterization of ZnO Nanotubes by Hydrothermal Method, International Journal of Scientific and Research Publications 5 (9) (2015) pp.1-4.

S. Shaziman, A.S. Ismail, M.H. Mamat, A.S. Zoolfakar, Influence of Growth Time and Temperature on the Morphology of ZnO Nanorods via Hydrothermal, Materials Science and Engineering 99 (2015) pp.1-8.

J. Song, S. Lim, Effect of Seed Layer on the Growth of ZnO Nanorods, J. Phys. Chem.111 (2007) pp.596-600.

L. Du, Y. Jiao, S. Niu, H. Miao, H. Yao, K. Wang, X. Hu, H. Fan, Control of morphologies and properties of zinc oxide nanorod arrays by slightly adjusting their seed layers, Nanomaterials and Nanotechnology 6 (2016) pp.1-8.

Akhiruddin, Sugianto, Irmansyah, The Influence of Hydrothermal Duration on Structures and Optical Properties of ZnO Nanoparticles, Journal of Materials Physics and Chemistry 2 (2) (2014) pp.34-37.

Z. Alaie, S.M. Nejad, M. H. Yousefi, S. Safarzadeh, The Effects of Different Seed Layers and Growth Time on the Quality of ZnO NRs Arrays, Int. J. Nanosci. Nanotechnol. 12 (2) (2016) pp.119-130.

T.A.A. Hassan, A. Qassim, Hydrothermal growth of nanostructured Zinc oxide, International Journal of Engineering Research & Science 2 (4) (2016) pp.22-27.

C. Xian-Mei, J. Yong, G. Xiao-Yong, Z. Xian-Wei, Ag-doped ZnO nanorods synthesized by two-step method, Chin. Phys. 21 (11) (2012) pp.1-5.

S. Pokaia, P. Limnonthakula, M. Horprathumb, P. Eiamchaib, V. Pattantsetakulb, S. Limwicheanb, N. Nuntawongb, S. Porntheeraphatb, C. Chitichotpanyac, Influence of seed layer thickness on well-aligned ZnO nanorods via hydrothermal method, Materials Today: Proceedings 4 (2017) pp.6336–6341.

A.V. Bogdan1, A.T. Orlov, V.A. Ulianova, Growing parameters and quality of ZnO seed-layer film, Твердотельная электроника (Ukraine) 2 (2013) pp.16-21.

K. Loong Foo, U. Hashim, K. Muhammad, C.H. Voon, Sol–gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application, Nanoscale Research Letters 9 (429) (2014) pp.2-10.

A.A. Semenova, N.A Lashkova, A.I Maximov, V.A. Moshnikov, D.A. Kudryashov, A.M. Mozharov, V.N. Verbitsky, P.A. Somov, Formation of ZnO nanorods on seed layers for piezoelectric Nano generators, IOP Conf. Series: Journal of Physics 917 (3) (2017) pp.1-6.

F.S. Pomar, E. Martinez, M.F Melendrez, E.P. Tijerinal, Growth of vertically aligned ZnO nanorods using textured ZnO films, Nanoscale Research Letters (6) (2011) pp.1-11.

K.G. Yim, S.M. Jeon, M.S. Kim, S. Kim, G. Nam, D.Y. Lee, J.S. Kim, J. S. Kim, and J.Y. Leem, ZnO Nanorods on Nanofibrous ZnO Seed Layers by Hydrothermal Method and Their Annealing Effects, Proceedings of the International Congress on Advances in Applied Physics and Materials Science 121(1) (2012) pp.214-216.

K. Ho Kim, K. Utashiro, Y. Abe, M. Kawamura, Growth of Zinc Oxide Nanorods Using Various Seed Layer Annealing Temperatures and Substrate Materials, Int. J. Electrochem. Sci. 9 (2014) pp.2080 – 2089.

P.S. Kumar, M. Yogeshwari, A.D. Raj, D. Mangalaraj, D. Nataraj, U. Pal, Synthesis of Vertical ZnO Nanorods on Glass Substrates by Simple Chemical Method, Journal of Nano Research 5 (2009) pp.223-230.

X.Yu, X. Xu, D. Jin, S. Miao, N. Wang, K. Yao, Synthesis of ZnO Rods by a Simple Chemical Solution Deposition Method, Inorganic Materials 47 (1) (2011) pp. 41–44.

G.Z. Jia, B.X. Hao, X.C. Lu, X.L. Wang, Y.M. Li, J.H. Yao, Solution Growth of Well-Aligned ZnO Nanorodson Sapphire Substrate, ACTA PHYSICA POLONICA (124) (1) (2013) pp.74-77.

A.H. Kurda, Y.M. Hassan, N.M. Ahmed, Controlling Diameter, Length and Characterization of ZnO Nanorods by Simple Hydrothermal Method for Solar Cells Journal of Nano Science and Engineering 5 (2015) pp.34-40.


Refbacks

  • There are currently no refbacks.