Object Detection and Recognition Using Local Quadrant Pattern

Testing on The Skin Cancer Region

Asaad Noori Hashim
Department of Computer Science
Faculty of Computer Science and Mathematics
University of Kufa
Najaf, Iraq
asaad.alshareefi@uokufa.edu.iq

Hassan Mohammed Mahdi Al-Jawahry
Department of Computer Science
Faculty of Computer Science and Mathematics
University of Kufa
Najaf, Iraq
hassanm.aljawahry@student.uokufa.edu.iq

Received Feb. 18, 2019. Accepted for publication Mar. 7, 2019

DOI: http://dx.doi.org/10.31642/JoKMC/2018/060202

Abstract—Object detection and recognition is one of the important techniques in computer vision for searching and scanning and identifying an object in images or videos. Object detection and recognition enters into many important fields where one of the uses of object detection and recognition is to detect region of injury and determine the type of injury. This paper suggested a new effective method called Local Quadrant Pattern (LQP). The proposed method uses a window and passes it on all pixels of the image and uses the pixel direction to arrange the adjacent pixels. It also uses four code values to encode and then produce a texture feature matrix which is used to detect objects as well as extract features based on magnitude of pixels for image classification. The experiments were conducted on the infected regions in the skin and the results showed the ability of the method to detect regions of infection as well as the high accuracy in the classification of those regions.

Keywords—Local Quadrant Pattern (LQP), Object Detection, Threshold, Local Ternary Pattern (LTP), Skin, Cancer

I. INTRODUCTION

Object detection is one of the main and important techniques in computer vision and image processing. There are many goals of object detection such as detecting, locating and labelling objects and it can be applied to both images or videos. Each object has a set of features that are specific to it and distinguish it from other objects. Object detection algorithms use these features after they are extracted to learn computers in objects. There is a difference between two important terms: objects detection and objects recognition. Objects detection is the procedure of detecting objects in an image, sometimes with the location and size of that object. Recognition is the operation of identifying detected objects. Recognition can be also considered as a classification problem, where the aim is to classify and detect objects into certain classes. There are many applications and uses of object detection such as advanced driver assistance systems, video surveillance and image retrieval. This can be also used for object tracking, for example, tracking a car [1, 2, 3, 4]. In 2010, Felzenszwalb, P. F., et. al. have described an object detection system based on mixtures of multiscale deformable part models by combined a margin-sensitive approach for data-mining hard negative examples with a formalism called latent SVM. Their system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges [4]. In 2016, Kumar, K. R., et. al. have suggested two methods for object detection by using the texture that is available over the surface of the object and by the outline of the objects in an image. Both of the methods prove to have their own advantages and limitations; so based on the applications the appropriate method can be applied [5]. In 2018, Burić, Matija, et. al. provided an overview of the current state-of-the-art detection methods that rely on convolutional neural networks (CNNs) and test their performance on custom video sports materials acquired during handball training and matches [6].

One of the most important usage of object detection is in medical fields such as detecting tumor in brain or cancer region in skin. Because of the importance of this field, which depends on the object detection, there have been research, including: In 2014, Santosh Achakanalli, et. al. presented an improved method which uses statistical features and dermoscopic features such as ABCD for detection and diagnosis. Processing steps for dermoscopic images are noise removal, segmentation using threshold, statistical feature extraction using Gray Level Co-occurrence Matrix (GLCM), and classification by using Artificial Neural Network. The results of the neural network and the ABCD parameters indicate effectively and efficiently for the skin cancer detection and diagnosis [7]. In 2015, Sumithra R, et. al. proposed method to segment and classify the skin lesion. The method first removes unwanted objects such as hair. Lesion automatic segmented based on automatic initialization of seed points to implement the region growing technique. Then, classify the skin lesion by using linear Support Vector Machine (SVM) and k-Nearest Neighbor (k-NN) classifiers [8]. In 2015, Shivangi Jain, et. al. proposed method for the detection of Melanoma Skin Cancer. The input to the system is the skin lesion image, by applying new image processing techniques. It analyses to conclude the presence of skin...
The lesion image analysis tools check for the various melanoma parameters like Asymmetry, Border, Color, Diameter, etc. by texture, size and shape analysis for image segmentation and feature stages. The extracted features are used to classify the image as normal skin or melanoma cancer lesion [9]. In 2016, Reda Kasmi, et. al. at first enabled automatically detection of hair based on Gabor filters, and lesion boundaries by using geometric active contours. Algorithm is proceeding to extract the features of ABCD attributes. Techniques used in this method combine existing methods with new methods to detect color asymmetry and dermoscopic structures [10].

The interest in the field of detection of objects has become necessary for researchers to find the best approach in this area. In this paper we have proposed a new method called Local Quadrant Pattern (LQP) to detect the injury region in the skin.

The organization of the paper as follows: Section 2 shows some techniques that related with the proposed method. Section 3 shows the proposed method. Section 4 Features Extraction. Section 5 Experimental Results and last section 6 conclusion.

II. METHODOLOGY

Texture Feature Coding Method (TFCM), Local Ternary Pattern (LTP) and Image gradient are described in this section.

A. Texture Feature Coding Method

Texture Feature Coding Method (TFCM) is a technique which is derived from Gray Level Co-occurrence Matrix (GLCM) and Texture Spectrum (TS) method [11]. This technique has been proposed by Horng by transforming an original image to texture feature image [12]. The pixels in texture feature image represent Texture Feature Numbers (TFNs). The TFN of each pixel is generated on the basis of gray-level changes of its eight surrounding pixels which is called a texture unit [13, 14]. This method can be summarized as follows:

Let x is pixel in image X with its eight neighbors where Horng [12, 14] called it 8-connectivity of the texture unit. This 8-connectivity will be divided into first and second order 4-connectivity. The first order connectivity refers to horizontal and vertical neighbors and it’s denoted by α. While the second order connectivity is diagonally adjacent to x, which refers to diagonal neighbors and it’s denoted by β. Each line produces vector with two pairs that calculating by the three successive connectivity with pixel x. for example the line 0-180 in α have three pixels (a, b, c) where b is the pixel x, a its right neighbor and c its left neighbor, so the vector is produced by calculating (a-b, b-c) and so on to other lines.

Then mapping the vectors to four different types of gray-level variation, depending on tolerance threshold (ɛ), that is shown in “Fig.1” and described in [14].

After that mapping each line in α and β to initial feature number with value 1-10. And finally, each α and β is mapping to produce TFN with values 0 – 54[13].

![Fig. 1. Types of gray-level graphical structure variations.](image)

B. Local Ternary Pattern

Local Ternary Pattern (LTP) is stretching of Local binary patterns where use 3x3 window. LTP extends LBP to three valued codes by using specified threshold T, in which the values around center pixel take zero value if it’s in zone of ±T, +1 is they above or -1 is they below [15] as next equation:

\[C(N_l, N_r) = \begin{cases} 0 & -T \leq N_l - N_r \leq T \\ -1 & N_l - N_r < -T \end{cases} \]

where \(N_c \) is center pixel in 3x3 window and \(N_i \) is neighbor pixel in sequence \(i \) of this window

LTP takes a local neighborhood around each pixel, where the number of neighbors in the common is eight neighbors, i.e. 3x3 window. Then thresholds the pixels of the neighborhood as equation (1).

There is two ways to get result [16], first by use 3\(^n\) valued codes [17, 18] as equation (2):

\[LTP_{row,col} = \sum_{i=1}^{N} (N_l N_r) \times 3^{i-1} \]

where LTP is new value to center pixel. The second way is achieved by splitting the \(C(N_l N_r) \) into upper and lower vectors [19, 20] as equations (3 and 4):

\[UPPER = \begin{cases} 1 & \text{if } C(N_l N_r) = 1 \\ 0 & \text{else} \end{cases} \]

\[LOWER = \begin{cases} 1 & \text{if } C(N_l N_r) = -1 \\ 0 & \text{else} \end{cases} \]

and each vector can calculate a new value of center pixel as equation (5):

\[LB P_{row,col} = \sum_{i=1}^{N} F \times 2^{i-1} \]

where F is UPPER or LOWER vector.

C. Image Gradient

An image gradient is a directional variation in the density or color in an image. The gradient of the image is one of the primary structures in image processing. It is used in many methods such as Canny edge detector. Image gradients can be used to extract information from images. Gradient images are formed from the original image by convolving with a filter, such as Sobel, prewitt filter, etc. Each pixel of a gradient image measures the change in intensity of that same point in the original image, in a given direction [21].
As mentioned in the explanation, for each pixel the degree of change in gradient called magnitude and direction. Following steps are to calculate these two values\cite{[22]}:

By using prewitt filter window “Fig. 2”, convolutes each window with all the image to produce two matrices, meaning that each pixel has two values \(d, dy\):

\[
d(r, c) = \sum_{i=1}^{1} \sum_{j=1}^{1} pi(r + i, c + j) * Pr(i, j)
\]

\[
d(r, c) = \sum_{i=1}^{1} \sum_{j=1}^{1} pi(r + i, c + j) * Pr(i, j)
\]

then calculate magnitude:

\[
(row, col) = \sqrt{dx^2 + dy^2}
\]

and calculate direction:

\[
(row, col) = \tan^{-1}\frac{dy}{dx}
\]

Finally, using the following equations to calculate the destination pixel location:

\[
r\bar{0} = row - \sin \theta(row, col)
\]

\[
\bar{oc} = col + \cos \theta(row, col)
\]

where \(row, col\) are the location of center pixel, \(r\bar{0}, \bar{oc}\) are the location of destination neighbor pixel.

![Fig. 2. Prewitt Window.](image)

III. THE PROPOSED METHOD

This section represents a new method called Local Quadrant Pattern (LQP) to produce texture feature image from original image. This production has texture information which helps to detect objects in this image as well as to classify original image after extract features. LQP, same to LBP and LTP, use 3x3 window around entire image to get information neighbors of center pixel and save the new value in this center.

In LQP, the sequence of neighbors will be different from previous methods. It will not be arranged in random form but will use the direction of the pixel to see from the first pixel neighbor and then sequence in the direction of the clock “Fig. 3” if we suppose that the direction of center pixel is to the left neighbor. The pixel orientation is calculated by using the equation (9) and then using the equations (10, 11) to calculate the destination pixel location.

![Fig. 2. Prewitt Window.](image)

![Fig. 3. 3x3 window and order of neighbor.](image)

These neighbors are encoding (threshold) into four code values which called gray-level class numbers. Each value represents the degree of variation. The equation of LQP technique is improved by checking if the absolute of \(D_{i,1}\) and \(D_{i,2}\) bigger than threshold value and choosing 3 or 4 without need to check all four code values as follows:

\[
T_i = \begin{cases}
3 & \text{sign}(D_{i,1}) = \text{sign}(D_{i,2}) \text{ if } |D_{i,1}| + |D_{i,2}| > \varepsilon \text{ else (12)} \\
4 & \text{else} \\
1 & \text{both and } |D_{i,1}| \leq \varepsilon \text{ and } |D_{i,2}| \leq \varepsilon \\
2 & \text{else}
\end{cases}
\]

where \(i\) is neighbor number, its value from 1 to 4, \(D_{i,1} = N_i - N_c\) and \(D_{i,2} = N_c - N_{i+4}\).

Now, each class (or value) used two neighbors of center pixel where these neighbors are opposite. (as shown in “Fig. 4”)

![Fig. 4. Figure shown the opposite neighbors.](image)

The equation (12) produces vector with four values (each two neighbors to be one value). To calculate the result, use \(4^n\) code to create LQP matrix, each value in this vector coding with its index and summation all values to get new value for center pixel as the next equation:

\[
LQ_{(row, col)} = \sum_{i=1}^{4} (T_i - 1) \times 4^{i-1}
\]

where \((row, col)\) is position of pixel in origin image.

LQP matrix can be converted to binary matrix in order to fill all its holes. The new matrix consists of ones and zeros values where the ones values consider as objects while the zeros as the background. The location of objects can be determined by using matlab code “regionprops”. These objects can be also subtracted by removing the zeros values from original image. The flowchart of Local Quadrant Pattern is shown in “Fig. 5”:

![Fig. 5. Flowchart of Local Quadrant Pattern.](image)
common nevi, 80 atypical nevi, and 40 melanomas [23]. The tests will be about detecting the infected area in the skin and classifying the area as cancer or normal.

A. Detecting The Infected Area

Next is steps for detecting the region in skin that applied on image “Fig. 6” as example:

• Convert image to gray level:

![Fig. 6. Skin image example.](image)

• Calculate magnitude and direction using \textit{imgradient} with \textit{prewitt} filter:

![Fig. 7. Gray level of skin image.](image)

• Use the proposed method:

![Fig. 8. Magnitude and Direction of skin image](image)

V. EXPERIMENTAL RESULTS

This section showing the experimental results of using the proposed method on skin dataset. The database used is PH2 data. The PH² dataset has been developed for research and benchmarking purposes, in order to facilitate comparative studies on both segmentation and classification algorithms of dermoscopic images. The dermoscopic images were obtained at the Dermatology Service of Hospital Pedro Hispano (Matosinhos, Portugal) under the same conditions through Tuebinger Mole Analyzer system using a magnification of 20x. They are 8-bit RGB color images with a resolution of 768x560 pixels. This image database contains a total of 200 dermoscopic images of melanocytic lesions, including 80 common nevi, 80 atypical nevi, and 40 melanomas [23]. The tests will be about detecting the infected area in the skin and classifying the area as cancer or normal.

IV. FEATURES EXTRACTION

The classification of images done by using some features that are extracted from image. When produce texture feature image form original image, we can get useful features.

In this work, features can be extracted form LQP matrix. The LQP matrix contains texture feature number (TFN). We would like to compute the frequency of TFN around all matrix with the weight of the pixel. The weight of pixels here is the magnitude of each pixel. For example, this frequency LQP matrix can be calculated by counting all TFNs which equal to 0, 1, ..., 255. As next equation:

\[
F_i = \sum_{x=1}^{N} \sum_{y=1}^{M} \rho(i, LQP_{xy}) \times w_{xy}, \tag{14}
\]

\[(A, B) = \begin{cases}
1 & \text{if } A = B \\
0 & \text{otherwise}
\end{cases}
\]

where \(i = 0, 2, ..., 255\), \(M, N\) are size of image and \(w_{xy}\) is magnitude of pixel.

• convert the producing matrix to binary matrix.

• We can observe that after application of the method that white region appeared. So, we use the \textit{matlab} code (\texttt{imfill}) to close the holes in the matrix. In “Fig. 10” shows how the affected area becomes clear.

![Fig. 9. LQP for skin image.](image)
Fig. 10. LQP image after close holes.

- Thin the edge of object which produce the infected region:

Fig. 11. Thinning the edge of object.

- In the last step, subtract the region from the background:

Fig. 12. Subtracting the region from background.

“Fig. 13” shows the detection in proposed method and the expert and the difference between them:

Fig. 13. Compare between LQP detection and expert detection.

The above “Fig. 13” shows that the proposed method has the ability to detect the affected region in the skin. The difference was a little and simple compared with the detecting of the expert.

The next figure indicates the results of tests on some infected skin images and compares them with expert detecting:

B. Classification The Infected Area

In this experiment we will classify the affected region as cancer or natural using 150 images from the dataset. The following steps are preprocessing of the input image:

- Convert the input image to gray-level image:

Fig. 15. Infected area of skin image.

- Calculate both magnitude and direction of each pixel:

Fig. 16. Magnitude and direction for infected area of skin.

- Produce the LQP matrix for this image that used the direction of each pixel to determine the first adjacent pixel:
Fig. 17. LQP matrix of skin.

- Extract features of producing matrix and save these features in a vector.

The K-Nearest Neighbour (K-NN) technique has used in the classification where K is 1. Firstly, all required features are extracted from each image through both training set and testing set. Secondly, we calculate the distance between each feature of the test image with the corresponding features in the training image by using Euclidean method. In the next step, sorting for distances as ascending is performed such that the first value is considered the smallest distance. The closest class with the training D.B. considered as a class of the test image.

Instead of calculating the distance between test image and the average of each class, we calculate the distance between the test image and each image of the training. The reason of that is: test image can be closer to a particular image within this class while this test image is far away from the average of the class.

We conduct the tests by taking 75% and then 80% of the data to training. The results of these tests are shown as in the TABLE I where the time represent the time that takes to extracting features for all 150 images by calculating the time of CPU at the beginning and the end of the program. The table presents the results of classification and the time for LBP, LTP and LQP methods to compare between them.

<table>
<thead>
<tr>
<th>Method</th>
<th>Time Taken (Sec.)</th>
<th>Percentage of training data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>75%</td>
</tr>
<tr>
<td>LBP</td>
<td>4135.593</td>
<td>89.18</td>
</tr>
<tr>
<td>LTP</td>
<td>5200.031</td>
<td>83.78</td>
</tr>
<tr>
<td>LQP (Proposed)</td>
<td>1567.968</td>
<td>100</td>
</tr>
</tbody>
</table>

Fig. 18 shown the chat of accuracy for each percentage that taken for training data, however Fig. 19 shown the chart of time that taken to extract features.

Fig. 18. Chart of the accuracy.

Fig. 19. Chart of the time taken in extracting features.

We can conclude that the proposed method is effective in classifying the affected region of the skin as well as much faster extraction features.

VI. CONCLUSIONS

Local Quadrant Pattern is a new method suggested in this paper. The proposed method has developed previous methods in local patterns where the 3×3 window has been used to get the information of pixel and its neighbors. This method was suggested to use the direction of pixel and to set the first neighbor instead of the random and non-uniform assignment as in the previous methods. The proposed method also used the magnitude of each pixel as a weight for the pixel and used with the extracted features. The tests were conducted on the proposed method as follows:
• The results have been revealed that the ability of improved method was high quality to detect the infected area in the skin by comparing the results with the expert detection.

• The classification experiment was done using an algorithm k-NN where K is equal to 1 and the results of the classification for proposed method were compared with LBP and LTP methods. The results showed that the proposed method is better than the other methods where the accuracy is 100% while the other methods are less than 90%. The time taken to extract the features was also calculated and the results show that the proposed method is faster than the other methods.

REFERENCES